An Analysis of Evolutionary Algorithms for Finding Approximation Solutions to Hard Optimisation Problems
نویسندگان
چکیده
In practice, evolutionary algorithms are often used to find good feasible solutions to complex optimisation problems in a reasonable running time, rather than the optimal solutions. In theory, an important question we should answer is that: how good approximation solutions can evolutionary algorithms produce in a polynomial time? This paper makes an initial discussion on this question and connects evolutionary algorithms with approximation algorithms together. It is shown that evolutionary algorithms can’t find a good approximation solution to two families of hard problems.
منابع مشابه
Approximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کاملMerging Constrained Optimisation with Deterministic Annealing to Solve Combinatorially Hard Problems
Several parallel analogue algorithms, based upon mean field theory (MFT) approximations to an underlying statistical mechanics formulation, and requiring an externally prescribed annealing schedule, now exist for finding approximate solutions to difficult combinatorial optimisation problems. They have been applied to the Travelling Salesman Problem (TSP), as well as to various issues in computa...
متن کاملStudy of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning
Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...
متن کاملA multi-objective resource-constrained optimization of time-cost trade-off problems in scheduling project
This paper presents a multi-objective resource-constrained project scheduling problem with positive and negative cash flows. The net present value (NPV) maximization and making span minimization are this study objectives. And since this problem is considered as complex optimization in NP-Hard context, we present a mathematical model for the given problem and solve three evolutionary algorithms;...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003